There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(x){\frac{1}{e}}^{X}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {\frac{1}{e}}^{X}ln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {\frac{1}{e}}^{X}ln(x)\right)}{dx}\\=&({\frac{1}{e}}^{X}((0)ln(\frac{1}{e}) + \frac{(X)(\frac{-0}{e^{2}})}{(\frac{1}{e})}))ln(x) + \frac{{\frac{1}{e}}^{X}}{(x)}\\=&\frac{{\frac{1}{e}}^{X}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !