There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{(y(x))}^{2}cos(ln(y(x)))}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = y^{2}xcos(ln(yx))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( y^{2}xcos(ln(yx))\right)}{dx}\\=&y^{2}cos(ln(yx)) + \frac{y^{2}x*-sin(ln(yx))y}{(yx)}\\=&y^{2}cos(ln(yx)) - y^{2}sin(ln(yx))\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !