Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{1}{sqrt(a)})ln(2ax + b + 2sqrt(a(a{x}^{2} + bx + c)))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(2ax + b + 2sqrt(a^{2}x^{2} + abx + ac))}{sqrt(a)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(2ax + b + 2sqrt(a^{2}x^{2} + abx + ac))}{sqrt(a)}\right)}{dx}\\=&\frac{(2a + 0 + \frac{2(a^{2}*2x + ab + 0)*\frac{1}{2}}{(a^{2}x^{2} + abx + ac)^{\frac{1}{2}}})}{(2ax + b + 2sqrt(a^{2}x^{2} + abx + ac))sqrt(a)} + \frac{ln(2ax + b + 2sqrt(a^{2}x^{2} + abx + ac))*-0*\frac{1}{2}}{(a)(a)^{\frac{1}{2}}}\\=&\frac{2a}{(2ax + b + 2sqrt(a^{2}x^{2} + abx + ac))sqrt(a)} + \frac{2a^{2}x}{(2ax + b + 2sqrt(a^{2}x^{2} + abx + ac))(a^{2}x^{2} + abx + ac)^{\frac{1}{2}}sqrt(a)} + \frac{ab}{(2ax + b + 2sqrt(a^{2}x^{2} + abx + ac))(a^{2}x^{2} + abx + ac)^{\frac{1}{2}}sqrt(a)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return