There are 1 questions in this calculation: for each question, the 1 derivative of z is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({e}^{z}){\frac{1}{(z - 1)}}^{2}\ with\ respect\ to\ z:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{z}}{(z - 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{z}}{(z - 1)^{2}}\right)}{dz}\\=&(\frac{-2(1 + 0)}{(z - 1)^{3}}){e}^{z} + \frac{({e}^{z}((1)ln(e) + \frac{(z)(0)}{(e)}))}{(z - 1)^{2}}\\=&\frac{-2{e}^{z}}{(z - 1)^{3}} + \frac{{e}^{z}}{(z - 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !