Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{x}^{y} + log_{y}^{z} + log_{z}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{x}^{y} + log_{y}^{z} + log_{z}^{x}\right)}{dx}\\=&(\frac{(\frac{(0)}{(y)} - \frac{(1)log_{x}^{y}}{(x)})}{(ln(x))}) + (\frac{(\frac{(0)}{(z)} - \frac{(0)log_{y}^{z}}{(y)})}{(ln(y))}) + (\frac{(\frac{(1)}{(x)} - \frac{(0)log_{z}^{x}}{(z)})}{(ln(z))})\\=& - \frac{log_{x}^{y}}{xln(x)} + \frac{1}{xln(z)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return