There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{sin(345){x}^{8}{\frac{1}{e}}^{45678}}{cos(34789)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{8}sin(345)}{e^{45678}cos(34789)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{8}sin(345)}{e^{45678}cos(34789)}\right)}{dx}\\=&\frac{8x^{7}sin(345)}{e^{45678}cos(34789)} + \frac{x^{8}*-45678*0sin(345)}{e^{45679}cos(34789)} + \frac{x^{8}cos(345)*0}{e^{45678}cos(34789)} + \frac{x^{8}sin(345)sin(34789)*0}{e^{45678}cos^{2}(34789)}\\=&\frac{8x^{7}sin(345)}{e^{45678}cos(34789)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !