There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{(x + 1)}{(x - 1)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{x}{(x - 1)} + \frac{1}{(x - 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{x}{(x - 1)} + \frac{1}{(x - 1)})\right)}{dx}\\=&\frac{((\frac{-(1 + 0)}{(x - 1)^{2}})x + \frac{1}{(x - 1)} + (\frac{-(1 + 0)}{(x - 1)^{2}}))}{(\frac{x}{(x - 1)} + \frac{1}{(x - 1)})}\\=&\frac{-x}{(x - 1)^{2}(\frac{x}{(x - 1)} + \frac{1}{(x - 1)})} - \frac{1}{(x - 1)^{2}(\frac{x}{(x - 1)} + \frac{1}{(x - 1)})} + \frac{1}{(\frac{x}{(x - 1)} + \frac{1}{(x - 1)})(x - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !