Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 - cos(5t))}{(5t)}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{\frac{1}{5}cos(5t)}{t} + \frac{\frac{1}{5}}{t}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{\frac{1}{5}cos(5t)}{t} + \frac{\frac{1}{5}}{t}\right)}{dt}\\=& - \frac{\frac{1}{5}*-cos(5t)}{t^{2}} - \frac{\frac{1}{5}*-sin(5t)*5}{t} + \frac{\frac{1}{5}*-1}{t^{2}}\\=&\frac{cos(5t)}{5t^{2}} + \frac{sin(5t)}{t} - \frac{1}{5t^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return