Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{ln(sqrt({x}^{2} + 1))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{ln(sqrt(x^{2} + 1))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{ln(sqrt(x^{2} + 1))}\right)}{dx}\\=&({e}^{ln(sqrt(x^{2} + 1))}((\frac{(2x + 0)*\frac{1}{2}}{(sqrt(x^{2} + 1))(x^{2} + 1)^{\frac{1}{2}}})ln(e) + \frac{(ln(sqrt(x^{2} + 1)))(0)}{(e)}))\\=&\frac{x{e}^{ln(sqrt(x^{2} + 1))}}{(x^{2} + 1)^{\frac{1}{2}}sqrt(x^{2} + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return