There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(abs + (\frac{(1 + t)}{(1 - t)}))\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(abs + \frac{t}{(-t + 1)} + \frac{1}{(-t + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(abs + \frac{t}{(-t + 1)} + \frac{1}{(-t + 1)})\right)}{dt}\\=&\frac{(0 + (\frac{-(-1 + 0)}{(-t + 1)^{2}})t + \frac{1}{(-t + 1)} + (\frac{-(-1 + 0)}{(-t + 1)^{2}}))}{(abs + \frac{t}{(-t + 1)} + \frac{1}{(-t + 1)})}\\=&\frac{t}{(-t + 1)^{2}(abs + \frac{t}{(-t + 1)} + \frac{1}{(-t + 1)})} + \frac{1}{(abs + \frac{t}{(-t + 1)} + \frac{1}{(-t + 1)})(-t + 1)} + \frac{1}{(-t + 1)^{2}(abs + \frac{t}{(-t + 1)} + \frac{1}{(-t + 1)})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !