Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{log_{2}^{x}}^{log_{x}^{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{log_{2}^{x}}^{log_{x}^{2}}\right)}{dx}\\=&(\frac{(\frac{((\frac{(\frac{(0)}{(2)} - \frac{(1)log_{x}^{2}}{(x)})}{(ln(x))}))}{(log_{x}^{2})} - \frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{2}^{x}}{(2)})}{(ln(2))}))log_{log_{2}^{x}}^{log_{x}^{2}}}{(log_{2}^{x})})}{(ln(log_{2}^{x}))})\\=&\frac{-1}{xln(x)ln(log_{2}^{x})} - \frac{log_{log_{2}^{x}}^{log_{x}^{2}}}{xlog(2, x)ln(2)ln(log_{2}^{x})}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return