There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{2} + 1)sin(\frac{1}{({x}^{2} + 1)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}sin(\frac{1}{(x^{2} + 1)}) + sin(\frac{1}{(x^{2} + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}sin(\frac{1}{(x^{2} + 1)}) + sin(\frac{1}{(x^{2} + 1)})\right)}{dx}\\=&2xsin(\frac{1}{(x^{2} + 1)}) + x^{2}cos(\frac{1}{(x^{2} + 1)})(\frac{-(2x + 0)}{(x^{2} + 1)^{2}}) + cos(\frac{1}{(x^{2} + 1)})(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})\\=&2xsin(\frac{1}{(x^{2} + 1)}) - \frac{2x^{3}cos(\frac{1}{(x^{2} + 1)})}{(x^{2} + 1)^{2}} - \frac{2xcos(\frac{1}{(x^{2} + 1)})}{(x^{2} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !