There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x*100(1 - \frac{1}{(1 + \frac{x*100}{50})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 100x - \frac{100x}{(2x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 100x - \frac{100x}{(2x + 1)}\right)}{dx}\\=&100 - 100(\frac{-(2 + 0)}{(2x + 1)^{2}})x - \frac{100}{(2x + 1)}\\=&\frac{200x}{(2x + 1)^{2}} - \frac{100}{(2x + 1)} + 100\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !