There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x*10(1 - \frac{1}{(1 + \frac{x*10}{50})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 10x - \frac{10x}{(\frac{1}{5}x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 10x - \frac{10x}{(\frac{1}{5}x + 1)}\right)}{dx}\\=&10 - 10(\frac{-(\frac{1}{5} + 0)}{(\frac{1}{5}x + 1)^{2}})x - \frac{10}{(\frac{1}{5}x + 1)}\\=&\frac{2x}{(\frac{1}{5}x + 1)^{2}} - \frac{10}{(\frac{1}{5}x + 1)} + 10\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !