There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2l(1 + Bx)}{V(1 + Ax)} + \frac{4L}{V}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2l}{(Ax + 1)V} + \frac{2lBx}{(Ax + 1)V} + \frac{4L}{V}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2l}{(Ax + 1)V} + \frac{2lBx}{(Ax + 1)V} + \frac{4L}{V}\right)}{dx}\\=&\frac{2(\frac{-(A + 0)}{(Ax + 1)^{2}})l}{V} + 0 + \frac{2(\frac{-(A + 0)}{(Ax + 1)^{2}})lBx}{V} + \frac{2lB}{(Ax + 1)V} + 0\\=&\frac{-2lA}{(Ax + 1)^{2}V} - \frac{2lBAx}{(Ax + 1)^{2}V} + \frac{2lB}{(Ax + 1)V}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !