Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of q is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({m}^{2})hq}{2} + \frac{({(q - m)}^{2})sq}{2} + \frac{kd}{q}\ with\ respect\ to\ q:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}m^{2}hq + \frac{1}{2}sq^{3} - msq^{2} + \frac{1}{2}m^{2}sq + \frac{kd}{q}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}m^{2}hq + \frac{1}{2}sq^{3} - msq^{2} + \frac{1}{2}m^{2}sq + \frac{kd}{q}\right)}{dq}\\=&\frac{1}{2}m^{2}h + \frac{1}{2}s*3q^{2} - ms*2q + \frac{1}{2}m^{2}s + \frac{kd*-1}{q^{2}}\\=&\frac{m^{2}h}{2} + \frac{3sq^{2}}{2} - 2msq + \frac{m^{2}s}{2} - \frac{kd}{q^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return