There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 389.57{(1 - {e}^{(-0.331(x + 0.7449))})}^{3.1178}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 389.57(-{e}^{(-0.331x - 0.2465619)} + 1)^{\frac{15589}{5000}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 389.57(-{e}^{(-0.331x - 0.2465619)} + 1)^{\frac{15589}{5000}}\right)}{dx}\\=&389.57(3.1178(-{e}^{(-0.331x - 0.2465619)} + 1)^{\frac{10589}{5000}}(-({e}^{(-0.331x - 0.2465619)}((-0.331 + 0)ln(e) + \frac{(-0.331x - 0.2465619)(0)}{(e)})) + 0))\\=&402.033045526(-{e}^{(-0.331x - 0.2465619)} + 1)^{\frac{10589}{5000}}{e}^{(-0.331x - 0.2465619)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !