Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 814.2(1 - {{e}^{(-0.416(x + 2.07))}}^{3.002})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 814.2{e}^{{(-0.416x - 0.86112)}*{\frac{1501}{500}}} + 814.2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 814.2{e}^{{(-0.416x - 0.86112)}*{\frac{1501}{500}}} + 814.2\right)}{dx}\\=& - 814.2({e}^{(-0.416x - 0.86112)}((-0.416 + 0)ln(e) + \frac{(-0.416x - 0.86112)(0)}{(e)})) + 0\\=& - -338.7072{e}^{(-0.416x - 0.86112)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - -338.7072{e}^{(-0.416x - 0.86112)}\right)}{dx}\\=& - -338.7072({e}^{(-0.416x - 0.86112)}((-0.416 + 0)ln(e) + \frac{(-0.416x - 0.86112)(0)}{(e)}))\\=& - \frac{140.9021952{e}^{(-0.416x - 0.86112)}}{1}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return