Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sin({x}^{x}) - 12x + {{{x}^{x}}^{x}}^{ln(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin({x}^{x}) - 12x + {{{x}^{x}}^{x}}^{ln(x)}\right)}{dx}\\=&cos({x}^{x})({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})) - 12 + ({{{x}^{x}}^{x}}^{ln(x)}((\frac{1}{(x)})ln({{x}^{x}}^{x}) + \frac{(ln(x))(({{x}^{x}}^{x}((1)ln({x}^{x}) + \frac{(x)(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))}{({x}^{x})})))}{({{x}^{x}}^{x})}))\\=&{x}^{x}ln(x)cos({x}^{x}) + {x}^{x}cos({x}^{x}) + \frac{{{{x}^{x}}^{x}}^{ln(x)}ln({{x}^{x}}^{x})}{x} + {{{x}^{x}}^{x}}^{ln(x)}ln(x)ln({x}^{x}) + x{{{x}^{x}}^{x}}^{ln(x)}ln^{2}(x) + x{{{x}^{x}}^{x}}^{ln(x)}ln(x) - 12\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return