There are 1 questions in this calculation: for each question, the 1 derivative of k is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{nkln(nk)}{ln(k - 1)}\ with\ respect\ to\ k:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{nkln(nk)}{ln(k - 1)}\right)}{dk}\\=&\frac{nln(nk)}{ln(k - 1)} + \frac{nkn}{(nk)ln(k - 1)} + \frac{nkln(nk)*-(1 + 0)}{ln^{2}(k - 1)(k - 1)}\\=&\frac{nln(nk)}{ln(k - 1)} + \frac{n}{ln(k - 1)} - \frac{nkln(nk)}{(k - 1)ln^{2}(k - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !