There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{(3 + x)}{sqrt(9 - {x}^{2})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{3}{sqrt(-x^{2} + 9)} + \frac{x}{sqrt(-x^{2} + 9)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{3}{sqrt(-x^{2} + 9)} + \frac{x}{sqrt(-x^{2} + 9)})\right)}{dx}\\=&\frac{(\frac{3*-(-2x + 0)*\frac{1}{2}}{(-x^{2} + 9)(-x^{2} + 9)^{\frac{1}{2}}} + \frac{1}{sqrt(-x^{2} + 9)} + \frac{x*-(-2x + 0)*\frac{1}{2}}{(-x^{2} + 9)(-x^{2} + 9)^{\frac{1}{2}}})}{(\frac{3}{sqrt(-x^{2} + 9)} + \frac{x}{sqrt(-x^{2} + 9)})}\\=&\frac{x^{2}}{(-x^{2} + 9)^{\frac{3}{2}}(\frac{3}{sqrt(-x^{2} + 9)} + \frac{x}{sqrt(-x^{2} + 9)})} + \frac{1}{(\frac{3}{sqrt(-x^{2} + 9)} + \frac{x}{sqrt(-x^{2} + 9)})sqrt(-x^{2} + 9)} + \frac{3x}{(-x^{2} + 9)^{\frac{3}{2}}(\frac{3}{sqrt(-x^{2} + 9)} + \frac{x}{sqrt(-x^{2} + 9)})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !