There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(c + 1)x}{(c + {x}^{n})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{cx}{(c + {x}^{n})} + \frac{x}{(c + {x}^{n})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{cx}{(c + {x}^{n})} + \frac{x}{(c + {x}^{n})}\right)}{dx}\\=&(\frac{-(0 + ({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)})))}{(c + {x}^{n})^{2}})cx + \frac{c}{(c + {x}^{n})} + (\frac{-(0 + ({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)})))}{(c + {x}^{n})^{2}})x + \frac{1}{(c + {x}^{n})}\\=&\frac{-cn{x}^{n}}{(c + {x}^{n})^{2}} + \frac{c}{(c + {x}^{n})} - \frac{n{x}^{n}}{(c + {x}^{n})^{2}} + \frac{1}{(c + {x}^{n})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !