There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xln(2 + x) - (2x + 3)ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xln(x + 2) - 2xln(x) - 3ln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln(x + 2) - 2xln(x) - 3ln(x)\right)}{dx}\\=&ln(x + 2) + \frac{x(1 + 0)}{(x + 2)} - 2ln(x) - \frac{2x}{(x)} - \frac{3}{(x)}\\=&ln(x + 2) + \frac{x}{(x + 2)} - 2ln(x) - \frac{3}{x} - 2\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !