There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {(1 + \frac{1}{x})}^{n}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (\frac{1}{x} + 1)^{n}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (\frac{1}{x} + 1)^{n}\right)}{dx}\\=&((\frac{1}{x} + 1)^{n}((0)ln(\frac{1}{x} + 1) + \frac{(n)(\frac{-1}{x^{2}} + 0)}{(\frac{1}{x} + 1)}))\\=&\frac{-n(\frac{1}{x} + 1)^{n}}{(\frac{1}{x} + 1)x^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-n(\frac{1}{x} + 1)^{n}}{(\frac{1}{x} + 1)x^{2}}\right)}{dx}\\=&\frac{-(\frac{-(\frac{-1}{x^{2}} + 0)}{(\frac{1}{x} + 1)^{2}})n(\frac{1}{x} + 1)^{n}}{x^{2}} - \frac{n*-2(\frac{1}{x} + 1)^{n}}{(\frac{1}{x} + 1)x^{3}} - \frac{n((\frac{1}{x} + 1)^{n}((0)ln(\frac{1}{x} + 1) + \frac{(n)(\frac{-1}{x^{2}} + 0)}{(\frac{1}{x} + 1)}))}{(\frac{1}{x} + 1)x^{2}}\\=&\frac{-n(\frac{1}{x} + 1)^{n}}{(\frac{1}{x} + 1)^{2}x^{4}} + \frac{2n(\frac{1}{x} + 1)^{n}}{(\frac{1}{x} + 1)x^{3}} + \frac{n^{2}(\frac{1}{x} + 1)^{n}}{(\frac{1}{x} + 1)^{2}x^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !