There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-{e}^{x}}{(1 + {e}^{2}x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-{e}^{x}}{(xe^{2} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-{e}^{x}}{(xe^{2} + 1)}\right)}{dx}\\=&-(\frac{-(e^{2} + x*2e*0 + 0)}{(xe^{2} + 1)^{2}}){e}^{x} - \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(xe^{2} + 1)}\\=&\frac{{e}^{x}e^{2}}{(xe^{2} + 1)^{2}} - \frac{{e}^{x}}{(xe^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !