There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(2x - tan(x))x}{sin(2)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{xtan(x)}{sin(2)} + \frac{2x^{2}}{sin(2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{xtan(x)}{sin(2)} + \frac{2x^{2}}{sin(2)}\right)}{dx}\\=& - \frac{tan(x)}{sin(2)} - \frac{x*-cos(2)*0tan(x)}{sin^{2}(2)} - \frac{xsec^{2}(x)(1)}{sin(2)} + \frac{2*2x}{sin(2)} + \frac{2x^{2}*-cos(2)*0}{sin^{2}(2)}\\=& - \frac{tan(x)}{sin(2)} - \frac{xsec^{2}(x)}{sin(2)} + \frac{4x}{sin(2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !