Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(1 - {e}^{(\frac{-100}{x})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(-{e}^{(\frac{-100}{x})} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(-{e}^{(\frac{-100}{x})} + 1)\right)}{dx}\\=&\frac{(-({e}^{(\frac{-100}{x})}((\frac{-100*-1}{x^{2}})ln(e) + \frac{(\frac{-100}{x})(0)}{(e)})) + 0)}{(-{e}^{(\frac{-100}{x})} + 1)}\\=&\frac{-100{e}^{(\frac{-100}{x})}}{(-{e}^{(\frac{-100}{x})} + 1)x^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return