There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(1 - x)}^{3}p*0 + 3x{(1 - t)}^{2}p + 3{x}^{2}(1 - t)p*2 + {x}^{3}p*3\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3pt^{2}x - 6ptx + 3px + 6px^{2} - 6ptx^{2} + 3px^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3pt^{2}x - 6ptx + 3px + 6px^{2} - 6ptx^{2} + 3px^{3}\right)}{dx}\\=&3pt^{2} - 6pt + 3p + 6p*2x - 6pt*2x + 3p*3x^{2}\\=& - 12ptx - 6pt + 12px + 3pt^{2} + 9px^{2} + 3p\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !