There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{(x - sin(x))} - \frac{{arcsin(x)}^{2}}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(x - sin(x))} - \frac{arcsin^{2}(x)}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(x - sin(x))} - \frac{arcsin^{2}(x)}{x}\right)}{dx}\\=&({e}^{(x - sin(x))}((1 - cos(x))ln(e) + \frac{(x - sin(x))(0)}{(e)})) - \frac{-arcsin^{2}(x)}{x^{2}} - \frac{(\frac{2arcsin(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{x}\\=&-{e}^{(x - sin(x))}cos(x) + {e}^{(x - sin(x))} + \frac{arcsin^{2}(x)}{x^{2}} - \frac{2arcsin(x)}{(-x^{2} + 1)^{\frac{1}{2}}x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !