There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-x{(sec(\frac{x}{y}))}^{2}}{({y}^{2}tan(\frac{x}{y}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-xsec^{2}(\frac{x}{y})}{y^{2}tan(\frac{x}{y})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-xsec^{2}(\frac{x}{y})}{y^{2}tan(\frac{x}{y})}\right)}{dx}\\=&\frac{-sec^{2}(\frac{x}{y})}{y^{2}tan(\frac{x}{y})} - \frac{x*-sec^{2}(\frac{x}{y})(\frac{1}{y})sec^{2}(\frac{x}{y})}{y^{2}tan^{2}(\frac{x}{y})} - \frac{x*2sec^{2}(\frac{x}{y})tan(\frac{x}{y})}{y^{2}tan(\frac{x}{y})y}\\=&\frac{-sec^{2}(\frac{x}{y})}{y^{2}tan(\frac{x}{y})} + \frac{xsec^{4}(\frac{x}{y})}{y^{3}tan^{2}(\frac{x}{y})} - \frac{2xsec^{2}(\frac{x}{y})}{y^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !