There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{x}^{2}}{({sin(\frac{x}{3})}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{sin^{2}(\frac{1}{3}x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{sin^{2}(\frac{1}{3}x)}\right)}{dx}\\=&\frac{2x}{sin^{2}(\frac{1}{3}x)} + \frac{x^{2}*-2cos(\frac{1}{3}x)*\frac{1}{3}}{sin^{3}(\frac{1}{3}x)}\\=&\frac{-2x^{2}cos(\frac{1}{3}x)}{3sin^{3}(\frac{1}{3}x)} + \frac{2x}{sin^{2}(\frac{1}{3}x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !