Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({x}^{2} + 4x - 3)}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{8} + 16x^{7} + 84x^{6} + 112x^{5} - 266x^{4} - 336x^{3} + 756x^{2} - 432x + 81\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{8} + 16x^{7} + 84x^{6} + 112x^{5} - 266x^{4} - 336x^{3} + 756x^{2} - 432x + 81\right)}{dx}\\=&8x^{7} + 16*7x^{6} + 84*6x^{5} + 112*5x^{4} - 266*4x^{3} - 336*3x^{2} + 756*2x - 432 + 0\\=&8x^{7} + 112x^{6} + 504x^{5} + 560x^{4} - 1064x^{3} - 1008x^{2} + 1512x - 432\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return