There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ a{e}^{x}ln(x) + \frac{(b{e}^{(x - 1)})}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = a{e}^{x}ln(x) + \frac{b{e}^{(x - 1)}}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a{e}^{x}ln(x) + \frac{b{e}^{(x - 1)}}{x}\right)}{dx}\\=&a({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))ln(x) + \frac{a{e}^{x}}{(x)} + \frac{b*-{e}^{(x - 1)}}{x^{2}} + \frac{b({e}^{(x - 1)}((1 + 0)ln(e) + \frac{(x - 1)(0)}{(e)}))}{x}\\=&a{e}^{x}ln(x) + \frac{a{e}^{x}}{x} - \frac{b{e}^{(x - 1)}}{x^{2}} + \frac{b{e}^{(x - 1)}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !