There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 292.7(10.95 - x)ln(1 - (\frac{x}{10.95})) + 292.7x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3205.065ln(-0.0913242009132x + 1) - 292.7xln(-0.0913242009132x + 1) + 292.7x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3205.065ln(-0.0913242009132x + 1) - 292.7xln(-0.0913242009132x + 1) + 292.7x\right)}{dx}\\=&\frac{3205.065(-0.0913242009132 + 0)}{(-0.0913242009132x + 1)} - 292.7ln(-0.0913242009132x + 1) - \frac{292.7x(-0.0913242009132 + 0)}{(-0.0913242009132x + 1)} + 292.7\\=& - \frac{-26.730593607306x}{(-0.0913242009132x + 1)} - 292.7ln(-0.0913242009132x + 1) - \frac{292.7}{(-0.0913242009132x + 1)} + 292.7\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !