There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{{e}^{(\frac{-(A - nx)}{(y)})}}{({y}^{n})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(\frac{-A}{y} + \frac{nx}{y})}{y}^{(-n)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(\frac{-A}{y} + \frac{nx}{y})}{y}^{(-n)}\right)}{dx}\\=&({e}^{(\frac{-A}{y} + \frac{nx}{y})}((0 + \frac{n}{y})ln(e) + \frac{(\frac{-A}{y} + \frac{nx}{y})(0)}{(e)})){y}^{(-n)} + {e}^{(\frac{-A}{y} + \frac{nx}{y})}({y}^{(-n)}((0)ln(y) + \frac{(-n)(0)}{(y)}))\\=&\frac{n{e}^{(\frac{-A}{y} + \frac{nx}{y})}{y}^{(-n)}}{y}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !