There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ tan({x}^{3} - {e}^{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = tan(x^{3} - {e}^{x})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( tan(x^{3} - {e}^{x})\right)}{dx}\\=&sec^{2}(x^{3} - {e}^{x})(3x^{2} - ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))\\=&3x^{2}sec^{2}(x^{3} - {e}^{x}) - {e}^{x}sec^{2}(x^{3} - {e}^{x})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !