Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{0.95(x - 150)}{(x + 350)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{0.95x}{(x + 350)} - \frac{142.5}{(x + 350)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{0.95x}{(x + 350)} - \frac{142.5}{(x + 350)}\right)}{dx}\\=&0.95(\frac{-(1 + 0)}{(x + 350)^{2}})x + \frac{0.95}{(x + 350)} - 142.5(\frac{-(1 + 0)}{(x + 350)^{2}})\\=&\frac{-0.95x}{(x + 350)(x + 350)} + \frac{142.5}{(x + 350)(x + 350)} + \frac{0.95}{(x + 350)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return