There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {3}^{x}sin(3)x{\frac{1}{9}}^{x} - 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{3}^{(2x)}sin(3) - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{3}^{(2x)}sin(3) - 1\right)}{dx}\\=&{3}^{(2x)}sin(3) + x({3}^{(2x)}((2)ln(3) + \frac{(2x)(0)}{(3)}))sin(3) + x{3}^{(2x)}cos(3)*0 + 0\\=&{3}^{(2x)}sin(3) + 2x{3}^{(2x)}ln(3)sin(3)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !