There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{3{e}^{3}x}{sin(3x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{3xe^{3}}{sin(3x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3xe^{3}}{sin(3x)}\right)}{dx}\\=&\frac{3e^{3}}{sin(3x)} + \frac{3x*3e^{2}*0}{sin(3x)} + \frac{3xe^{3}*-cos(3x)*3}{sin^{2}(3x)}\\=&\frac{3e^{3}}{sin(3x)} - \frac{9xe^{3}cos(3x)}{sin^{2}(3x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !