There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2{({x}^{4} - 3{x}^{2} + 9)}^{0.25}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2(x^{4} - 3x^{2} + 9)^{\frac{1}{4}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2(x^{4} - 3x^{2} + 9)^{\frac{1}{4}}\right)}{dx}\\=&2(\frac{0.25(4x^{3} - 3*2x + 0)}{(x^{4} - 3x^{2} + 9)^{\frac{3}{4}}})\\=&\frac{2x^{3}}{(x^{4} - 3x^{2} + 9)^{\frac{3}{4}}} - \frac{3x}{(x^{4} - 3x^{2} + 9)^{\frac{3}{4}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !