Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 256({x}^{2} + 5)(68 + 15{x}^{2}){\frac{1}{(16{x}^{2} + 68)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{3840x^{4}}{(16x^{2} + 68)^{2}} + \frac{36608x^{2}}{(16x^{2} + 68)^{2}} + \frac{87040}{(16x^{2} + 68)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3840x^{4}}{(16x^{2} + 68)^{2}} + \frac{36608x^{2}}{(16x^{2} + 68)^{2}} + \frac{87040}{(16x^{2} + 68)^{2}}\right)}{dx}\\=&3840(\frac{-2(16*2x + 0)}{(16x^{2} + 68)^{3}})x^{4} + \frac{3840*4x^{3}}{(16x^{2} + 68)^{2}} + 36608(\frac{-2(16*2x + 0)}{(16x^{2} + 68)^{3}})x^{2} + \frac{36608*2x}{(16x^{2} + 68)^{2}} + 87040(\frac{-2(16*2x + 0)}{(16x^{2} + 68)^{3}})\\=& - \frac{245760x^{5}}{(16x^{2} + 68)^{3}} + \frac{15360x^{3}}{(16x^{2} + 68)^{2}} - \frac{2342912x^{3}}{(16x^{2} + 68)^{3}} + \frac{73216x}{(16x^{2} + 68)^{2}} - \frac{5570560x}{(16x^{2} + 68)^{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return