There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arcsin(\frac{sqrt(2)z}{sqrt({z}^{2} + 1)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arcsin(\frac{zsqrt(2)}{sqrt(z^{2} + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin(\frac{zsqrt(2)}{sqrt(z^{2} + 1)})\right)}{dx}\\=&(\frac{(\frac{z*0*\frac{1}{2}*2^{\frac{1}{2}}}{sqrt(z^{2} + 1)} + \frac{zsqrt(2)*-(0 + 0)*\frac{1}{2}}{(z^{2} + 1)(z^{2} + 1)^{\frac{1}{2}}})}{((1 - (\frac{zsqrt(2)}{sqrt(z^{2} + 1)})^{2})^{\frac{1}{2}})})\\=&\frac{0}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !