There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{ln(p)})}{({p}^{ln(x)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{ln(p)}{p}^{(-ln(x))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{ln(p)}{p}^{(-ln(x))}\right)}{dx}\\=&({x}^{ln(p)}((\frac{0}{(p)})ln(x) + \frac{(ln(p))(1)}{(x)})){p}^{(-ln(x))} + {x}^{ln(p)}({p}^{(-ln(x))}((\frac{-1}{(x)})ln(p) + \frac{(-ln(x))(0)}{(p)}))\\=&\frac{{x}^{ln(p)}{p}^{(-ln(x))}ln(p)}{x} - \frac{{p}^{(-ln(x))}{x}^{ln(p)}ln(p)}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !