There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{x}(cos(x) - sin(x) + 2x + 2)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{x}cos(x) - {e}^{x}sin(x) + 2x{e}^{x} + 2{e}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{x}cos(x) - {e}^{x}sin(x) + 2x{e}^{x} + 2{e}^{x}\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))cos(x) + {e}^{x}*-sin(x) - ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(x) - {e}^{x}cos(x) + 2{e}^{x} + 2x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 2({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&-2{e}^{x}sin(x) + 4{e}^{x} + 2x{e}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !