There are 1 questions in this calculation: for each question, the 15 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 15th\ derivative\ of\ function\ e^{x}sin(x)xcos(x)x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}e^{x}sin(x)cos(x)\\\\ &\color{blue}{The\ 15th\ derivative\ of\ function:} \\=&-1856190e^{x}sin(x)cos(x) + 3549210e^{x}cos^{2}(x) - 3549210e^{x}sin^{2}(x) - 2293290xe^{x}sin(x)cos(x) + 241860xe^{x}cos^{2}(x) - 108691x^{2}e^{x}sin(x)cos(x) - 68381x^{2}e^{x}cos^{2}(x) - 241860xe^{x}sin^{2}(x) + 68381x^{2}e^{x}sin^{2}(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !