There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ In(x + {(1 + x)}^{\frac{1}{2}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = Inx + (x + 1)^{\frac{1}{2}}In\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( Inx + (x + 1)^{\frac{1}{2}}In\right)}{dx}\\=&In + (\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}})In + 0\\=&In + \frac{In}{2(x + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( In + \frac{In}{2(x + 1)^{\frac{1}{2}}}\right)}{dx}\\=&0 + \frac{(\frac{\frac{-1}{2}(1 + 0)}{(x + 1)^{\frac{3}{2}}})In}{2} + 0\\=& - \frac{In}{4(x + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !