There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{-15}{(16{x}^{(\frac{7}{2})})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{-15}{16}}{x^{\frac{7}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{-15}{16}}{x^{\frac{7}{2}}}\right)}{dx}\\=&\frac{\frac{-15}{16}*\frac{-7}{2}}{x^{\frac{9}{2}}}\\=&\frac{105}{32x^{\frac{9}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{105}{32x^{\frac{9}{2}}}\right)}{dx}\\=&\frac{105*\frac{-9}{2}}{32x^{\frac{11}{2}}}\\=&\frac{-945}{64x^{\frac{11}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-945}{64x^{\frac{11}{2}}}\right)}{dx}\\=&\frac{-945*\frac{-11}{2}}{64x^{\frac{13}{2}}}\\=&\frac{10395}{128x^{\frac{13}{2}}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{10395}{128x^{\frac{13}{2}}}\right)}{dx}\\=&\frac{10395*\frac{-13}{2}}{128x^{\frac{15}{2}}}\\=&\frac{-135135}{256x^{\frac{15}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !