There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(-15{x}^{2} - 83x - 69)}{(-89x - 62)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-15x^{2}}{(-89x - 62)} - \frac{83x}{(-89x - 62)} - \frac{69}{(-89x - 62)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-15x^{2}}{(-89x - 62)} - \frac{83x}{(-89x - 62)} - \frac{69}{(-89x - 62)}\right)}{dx}\\=&-15(\frac{-(-89 + 0)}{(-89x - 62)^{2}})x^{2} - \frac{15*2x}{(-89x - 62)} - 83(\frac{-(-89 + 0)}{(-89x - 62)^{2}})x - \frac{83}{(-89x - 62)} - 69(\frac{-(-89 + 0)}{(-89x - 62)^{2}})\\=&\frac{-1335x^{2}}{(-89x - 62)^{2}} - \frac{30x}{(-89x - 62)} - \frac{7387x}{(-89x - 62)^{2}} - \frac{6141}{(-89x - 62)^{2}} - \frac{83}{(-89x - 62)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !