There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({({x}^{3} + 4)}^{5})}{8}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{8}x^{15} + \frac{5}{2}x^{12} + 20x^{9} + 80x^{6} + 160x^{3} + 128\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{8}x^{15} + \frac{5}{2}x^{12} + 20x^{9} + 80x^{6} + 160x^{3} + 128\right)}{dx}\\=&\frac{1}{8}*15x^{14} + \frac{5}{2}*12x^{11} + 20*9x^{8} + 80*6x^{5} + 160*3x^{2} + 0\\=&\frac{15x^{14}}{8} + 30x^{11} + 180x^{8} + 480x^{5} + 480x^{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !