There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(ln(2))}{(ln(100 + x) - ln(100))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(2)}{(ln(x + 100) - ln(100))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(2)}{(ln(x + 100) - ln(100))}\right)}{dx}\\=&(\frac{-(\frac{(1 + 0)}{(x + 100)} - \frac{0}{(100)})}{(ln(x + 100) - ln(100))^{2}})ln(2) + \frac{0}{(ln(x + 100) - ln(100))(2)}\\=&\frac{-ln(2)}{(x + 100)(ln(x + 100) - ln(100))^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !